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Calibration: Motivation and definition



Example: Weather forecasts

“Those forecasts which were marked
‘doubtful’ were the best I could frame under
the circumstances. […] If I make no
distinction between these and others, I
degrade the whole.”

—E. Cooke

 E. Cooke. “Weighting forecasts.” In: Monthly Weather Review 34.6 (June 1906), pp. 274–275
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Motivation: Classification example
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Motivation: Classification example
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Calibration: Intuition
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Calibration

Predictions consistent with empirically observed frequencies?

Prediction PX
Adélie Chinstrap Gentoo
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Empirical frequency lw(Y |PX)
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… … …

?
=

Definition
A probabilistic predictive model P is calibrated if

lw(Y |PX) = PX almost surely.

Notion captures also weaker confidence calibration

D. Widmann, F. Lindsten, and D. Zachariah. “Calibration tests in multi-class classification: A unifying framework.” In: Advances in Neural Information Processing
Systems 32. 2019

D. Widmann, F. Lindsten, and D. Zachariah. “Calibration tests beyond classification.” In: International Conference on Learning Representations. 2021
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Binary classification: Reliability diagram
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Binary classification: Reliability diagram
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Multi-class classification: All scores matter!

· · ·
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Common calibration evaluation techniques consider only the most-confident score

Common approaches do not distinguish between
the two predictions even though the control ac-
tions based on these might be very different!
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Weaker notions of calibration and calibration lenses

Weaker notions
Weaker notions of calibration such as confidence calibration or calibration of marginal
classifiers can be analyzed by considering calibration of induced predictive models.

Definition (Calibration lenses)
Let ψ be a measureable function that defines targets Z := ψ(Y, PX). Then ψ induces a
predictive model Q for targets Z with predictions

QX := lw
�

ψ(Ỹ, PX)
�

where Ỹ ∼ PX. Function ψ is called a calibration lens.

 J. Vaicenavicius et al. “Evaluating model calibration in classification.” In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics. Vol. 89. Apr. 2019
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Beyond classification
Definition (reminder)
A probabilistic predictive model P is calibrated if

lw(Y |PX) = PX almost surely.

Examples of other target spaces
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Calibration errors



Expected calibration error (ECE)

Definition
The expected calibration error (ECE) with respect to distance measure d is defined as

ECEd := EPXd
�

PX, lw(Y |PX)
�

.

Choice of distance measure d

É For classification typically (semi-)metrics on the probability simplex (e.g., cityblock,
Euclidean, or squared Euclidean distance)
É For general probabilistic predictive models statistical divergences
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Statistical divergences

Definition
Let P be a space of probability distributions. A function d : P × P → R that satisfies
É d(P,Q) ≥ 0 for all P,Q ∈ P ,
É d(P,Q) = 0 if and only if P = Q,

is a statistical divergence.

Note
É d dœs not need to be symmetric
É d dœs not need to satisfy the triangle inequality

Examples
É ƒ -divergences, e.g., Kullback-Leibler divergence or total variation distance
É Wasserstein distance
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Scoring rules: Definition

Definition
The expected score of a probabilistic predictive model P is defined as

EPX ,Y s(PX, Y)

where scoring rule s(p,y) is the reward of prediction p if the true outcome is y.

Examples for classification
É Brier score: s(p, y) = −

∫

Ω

�

(δy − p)2
�

(dω)
É Logarithmic score: s(p, y) = logp

�

{y}
�
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Scoring rules: Decomposition

For proper scoring rules

EPX ,Y s(PX, Y) = EPX d(lw(Y), lw(Y |PX))

− EPX d(PX, lw(Y |PX))−S(lw(Y), lw(Y))

Expected score of P under Q

S(P,Q) :=
∫

Ω
s(P,ω)Q(dω)

Score divergence

d(P,Q) = S(Q,Q) − S(P,Q)

Models can trade off calibration for resolution!

 J. Bröcker. “Reliability, sufficiency, and the decomposition of proper scores.” In: Quarterly Journal of the Royal Meteorological Society 135.643 (July 2009)
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An alternative definition of calibration

Theorem
A probabilistic predictive model P is calibrated if

(PX, Y)
d
= (PX, ZX),

where ZX ∼ PX.

Calibration error as distance between lw
�

(PX, Y)
�

and lw
�

(PX, ZX)
�

D. Widmann, F. Lindsten, and D. Zachariah. “Calibration tests beyond classification.” In: International Conference on Learning Representations. 2021
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Calibration error: Integral probability metric

CEF := sp
ƒ∈F

�

�

�EPX ,Y ƒ (PX, Y) − EPX ,ZX ƒ (PX, ZX)
�

�

�

Examples
É 1-Wasserstein distance: F = {ƒ : ‖ƒ‖Lip ≤ 1}

É Total variation distance: F = {ƒ : ‖ƒ‖∞ ≤ 1}

Common choices of ECEd in classification can be formulated in this way

D. Widmann, F. Lindsten, and D. Zachariah. “Calibration tests in multi-class classification: A unifying framework.” In: Advances in Neural Information Processing
Systems 32. 2019
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Kernel calibration error: Maximum mean discrepancy (MMD)
Choose F = {ƒ ∈ H : ‖ƒ‖H ≤ 1} for some reproducing kernel Hilbert space H

Reproducing kernel Hilbert space (RKHS)

É Hilbert space of functions that satisfy ƒ close to g⇒ ƒ () close to g()
É Possesses a positive-definite function k as reproducing kernel

Definition
The kernel calibration error (KCE) of a model P with respect to kernel k is defined as

KCE2
k
:= CE2F =
∫

k
�

(p, y), (p̃, ỹ)
�

μ
�

d(p, y)
�

μ
�

d(p̃, ỹ)
�

,

where μ = lw
�

(PX, Y)
�

− lw
�

(PX, ZX)
�

.

D. Widmann, F. Lindsten, and D. Zachariah. “Calibration tests in multi-class classification: A unifying framework.” In: Advances in Neural Information Processing
Systems 32. 2019
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É Possesses a positive-definite function k as reproducing kernel

Definition
The kernel calibration error (KCE) of a model P with respect to kernel k is defined as

KCE2
k
:= CE2F =
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k
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(p, y), (p̃, ỹ)
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μ
�

d(p, y)
�

μ
�
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,

where μ = lw
�

(PX, Y)
�

− lw
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(PX, ZX)
�
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Choice of kernel

Observations
É Kernel k defined on the product space of predictions and targets

É In multi-class classification, k can be identified with a matrix-valued kernel on the
space of predictions
É For specific kernel choices, ZX can be integrated out analytically
É Otherwise numerical integration methods (e.g., Monte Carlo integration) can be used

to integrate out ZX

É Suggestive to use tensor product kernels k = kP ⊗ kY , where kP and kY are
kernels on the space of predictions and targets, respectively
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Tensor product kernel

Construction of kP with Hilbertian metrics
É For Hilbertian metrics of form dP(p, p̃) = ‖ϕ(p) − ϕ(p̃)‖2 for some ϕ : P → Rd,

kP(p, p̃) = exp
�

− λdνP(p, p̃)
�

, (1)

is valid kernel on the space of predictions for λ > 0 and ν ∈ (0,2]

É Parameterization of predictions gives rise to ϕ naturally
É For many mixture models, Hilbertian metrics of model components can be lifted to

Hilbertian metric of mixture models
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Estimation of calibration errors

Task
Estimate the calibration error of a model P from a validation dataset (X, Y)=1,...,n of
features and corresponding targets.

Dataset of predictions and targets sufficient
É Calibration (errors) defined based only on predictions and targets
É Estimation can be performed with dataset (PX , Y) of predictions and

corresponding targets instead
É Highlights that structure of features and model is not relevant for calibration

estimation
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ECE: Estimation

Problem
The estimation of lw(Y |PX) is challenging.

Binning predictions
É Common approach in classification
É Often leads to biased and inconsistent estimators

 J. Vaicenavicius et al. “Evaluating model calibration in classification.” In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics. Vol. 89. Apr. 2019
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ECE: Experiments

10-class classification
For three models M1, M2 and M3, 104 synthetic datasets (PX , Y)=1,...,250 are
sampled according to
É PX = Ct(p) with p ∼ Dir(0.1, . . . ,0.1),

É Y conditionally on PX from
M1 : PX , M2 : 0.5PX + 0.5δ1, M3 : U({1, . . . ,10}).

Model M1 is calibrated, and models M2 and M3 are uncalibrated.
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Kernel calibration error: Estimation

É For the MMD unbiased and consistent estimators are available

É Variance can be reduced by marginalizing out ZX
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Calibration tests



Problems with calibration errors

É Calibration errors have no meaningful unit or scale

É Different calibration errors rank models differently
É Calibration error estimators are random variables
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Calibration tests

Null hypothesis H0 := “model is calibrated”
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Consistency bars
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Consistency bars
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Variant

 J. Vaicenavicius et al. “Evaluating model calibration in classification.” In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics. Vol. 89. Apr. 2019



Kernel calibration error: Distribution-free tests

Upper bound the p-value
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Kernel calibration error: Distribution-free tests
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Kernel calibration error: Asymptotic tests

Approximate the p-value based on the asymptotic distribution
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Kernel calibration error: Asymptotic tests
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Calibration: Software packages



CalibrationAnalysis.jl

Summary
É Suite for analyzing calibration of probabilistic predictive models
É Written in Julia, with interfaces in Python (pycalibration) and R (rcalibration)

Features
É Supports classification and regression models
É Reliability diagrams (ReliabilityDiagrams.jl)
É Estimation of calibration errors such as ECE and KCE (CalibrationErrors.jl)
É Calibration tests (CalibrationTests.jl)
É Integration with Julia ecosystem: Supports Plots.jl and Makie.jl,

KernelFunctions.jl, and HypothesisTests.jl
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Calibration analysis: Penguins example

We train a naive Bayes classifier of penguin species based on bill depth, bill length, flipper
length, and body mass.
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Reliability diagram

Code
julia> using CalibrationAnalysis, CairoMakie

julia> reliability(

confidence,

outcome;

binning=EqualMass(; n=15),

deviation=true,

consistencybars=ConsistencyBars(),,→

)

Polished result
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Expected calibration error: Code

julia> ece = ECE(UniformBinning(5), TotalVariation());

julia> ece(confidence, outcome)

0.06594437403598197

julia> ece(predictions, observations)

0.15789651955832515



Kernel calibration error: Code

julia> kernel = GaussianKernel() ⊗ WhiteKernel();

julia> skce = SKCE(kernel);

julia> skce(predictions, observations)

0.0032631144705774404

julia> skce = SKCE(kernel; unbiased=false);

julia> skce(predictions, observations)

0.004202113116841622

julia> skce = SKCE(kernel; blocksize=5);

julia> skce(predictions, observations)

-0.005037270862051889



Calibration test: Code
julia> AsymptoticSKCETest(kernel, predictions, observations)

Asymptotic SKCE test

--------------------

Population details:

parameter of interest: SKCE

value under h_0: 0.0

point estimate: 0.00326311

Test summary:

outcome with 95% confidence: reject h_0

one-sided p-value: 0.0150

Details:

test statistic: -0.0009060378940361157

julia> test = ConsistencyTest(ece, predictions, observations);

julia> pvalue(test; bootstrap_iters=10_000)

0.0188



Additional resources

É Online documentation: https://devmotion.github.io/CalibrationErrors.jl/
É Talk at JuliaCon 2021: https://youtu.be/PrLsXFvwzuA

Slides available at https://talks.widmann.dev/2021/07/calibration/



Concluding remarks



Important takeaways

É More fine-grained analysis of calibration can be important
É MMD-like kernel calibration error can be applied to probabilistic models beyond

classification
É Estimators of kernel calibration error have appealing properties
É Calibration errors and reliability diagrams can be misleading


