

Calibration of probabilistic predictive models Machine Learning Journal Club, Gatsby Unit

David Widmann

Department of Information Technology, Uppsala University, Sweden Centre for Interdisciplinary Mathematics, Uppsala University, Sweden

28 March 2022

Contact: david.widmann@it.uu.se

About me

TL;DR 📖

- 31 year old PhD student at Uppsala University
- On parental leave since September 2021
- Research on uncertainty quantification of probabilistic models
- Active member in the Julia community

About me

Education 🦈

- 2017—now: PhD student (Uppsala University)
- 2016—2017: MSc Mathematics (TU Munich)
- 2013—2016: BSc Mathematics (TU Munich)
- 2007-2013: Human medicine (LMU and TU Munich)

About me

Education 🦈

- 2017—now: PhD student (Uppsala University)
- 2016—2017: MSc Mathematics (TU Munich)
- 2013—2016: BSc Mathematics (TU Munich)
- 2007-2013: Human medicine (LMU and TU Munich)

Research interests 🔬

- Research topic: "Uncertainty-aware deep learning"
- Statistics, probability theory, scientific machine learning, and computer science
- ► Julia programming, e.g., SciML and Turing

Papers

- J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019
 - Focus on multi-class classification, calibration lenses, calibration estimation and tests with ECE

Papers

- J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019
 - Focus on multi-class classification, calibration lenses, calibration estimation and tests with ECE
- D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32. 2019
 - Calibration errors and tests for multi-class classification based on matrix-valued kernels

Papers

- J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019
 - Focus on multi-class classification, calibration lenses, calibration estimation and tests with ECE
- D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32. 2019
 - Calibration errors and tests for multi-class classification based on matrix-valued kernels
- D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021
 - Calibration errors and tests for probabilistic predictive models based on scalar-valued kernels

Calibration: Motivation and definition

Example: Weather forecasts

@ MARK ANDERSON, WWW.ANDERTOONS.COM

"And now the 7-day forecast..."

E. Cooke. "Weighting forecasts." In: Monthly Weather Review 34.6 (June 1906), pp. 274-275

Example: Weather forecasts

© MARK ANDERSON, WWW.ANDERTOONS.COM

"Those forecasts which were marked 'doubtful' were the *best I could frame* under the circumstances. [...] If I make no distinction between these and others, I degrade the whole."

—E. Cooke

E. Cooke. "Weighting forecasts." In: Monthly Weather Review 34.6 (June 1906), pp. 274-275

Motivation: Classification example

K. B. Gorman, T. D. Williams, and W. R. Fraser. "Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis)." In: PLoS ONE 9.3 (Mar. 2014), e90081

Motivation: Classification example

Artwork by @allison_horst

Motivation: Classification example

Example: Prediction P_X

Adélie	Chinstrap	Gentoo	
80%	10%	10%	

Model P

Model P

Empirical frequency

Model P

Empirical frequency

Empirical frequency

Empirical frequency

Model P

Empirical frequency

Empirical frequency

Empirical frequency

Adelie	Chinstrap	Gentoo
	1	

Empirical frequency

Adelie	Chinstrap	Gentoo	
<i>Ш</i> т III	11	1	

Prediction P_X			
Adélie	Chinstrap	Gentoo	
80%	10%	10%	

Empirical frequency $|\alpha w(Y|P_X)|$

Adélie	Chinstrap	Gentoo	
IHT I/I	//	1	

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Predictions consistent with empirically observed frequencies?

Prediction <i>P_X</i>		•	Empirical frequency $l\alpha w(Y P_X)$			x)	
Adélie	Chinstrap	Gentoo	?	Adélie	Chinstrap	Gentoo	
80%	10%	10%		HHT 1/1	//	1	

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Predictions consistent with empirically observed frequencies?

Definition

A probabilistic predictive model P is calibrated if

 $|\alpha w(Y | P_X) = P_X \quad \text{almost surely.}$

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Predictions consistent with empirically observed frequencies?

Definition

A probabilistic predictive model P is calibrated if

 $law(Y | P_X) = P_X \qquad \text{almost surely.}$

Notion captures also weaker confidence calibration

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Multi-class classification: All scores matter!

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Multi-class classification: All scores matter!

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Multi-class classification: All scores matter!

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019
Multi-class classification: All scores matter!

Common calibration evaluation techniques consider only the most-confident score

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Multi-class classification: All scores matter!

Common calibration evaluation techniques consider only the most-confident score

Common approaches do not distinguish between ob the two predictions even though the control actions based on these might be very different!

80%	0%	20%
80%	20%	0%

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Weaker notions of calibration and calibration lenses

Weaker notions

Weaker notions of calibration such as confidence calibration or calibration of marginal classifiers can be analyzed by considering calibration of induced predictive models.

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Weaker notions of calibration and calibration lenses

Weaker notions

Weaker notions of calibration such as confidence calibration or calibration of marginal classifiers can be analyzed by considering calibration of induced predictive models.

Definition (Calibration lenses)

Let ψ be a measureable function that defines targets $Z := \psi(Y, P_X)$. Then ψ induces a predictive model Q for targets Z with predictions

 $Q_X := \operatorname{law}\left(\psi(\tilde{Y}, P_X)\right)$

where $\tilde{Y} \sim P_X$. Function ψ is called a *calibration lens*.

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Beyond classification

Definition (reminder)

A probabilistic predictive model P is calibrated if

 $law(Y | P_X) = P_X \qquad \text{almost surely.}$

[🛢] D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Beyond classification

Definition (reminder)

A probabilistic predictive model P is calibrated if

 $l\alpha w(Y | P_X) = P_X \qquad \text{almost surely.}$

Examples of other target spaces graphs protein structure \mathbb{N}_0 \mathbb{R}^d 40 10 \succ 20 -20 ò 20 40 20 -20 0 40 60 х х

🛢 D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Calibration errors

Expected calibration error (ECE)

Definition

The expected calibration error (ECE) with respect to distance measure d is defined as

 $ECE_d := \mathbb{E}_{P_X} d(P_X, \operatorname{law}(Y | P_X)).$

Expected calibration error (ECE)

Definition

The expected calibration error (ECE) with respect to distance measure d is defined as

$$\mathsf{ECE}_d := \mathbb{E}_{P_X} d\big(P_X, \mathsf{law}(Y | P_X)\big).$$

Choice of distance measure d

 For classification typically (semi-)metrics on the probability simplex (e.g., cityblock, Euclidean, or squared Euclidean distance)

Definition

The expected calibration error (ECE) with respect to distance measure d is defined as

$$\mathsf{ECE}_d := \mathbb{E}_{P_X} d\big(P_X, \mathsf{law}(Y | P_X)\big).$$

Choice of distance measure *d*

- For classification typically (semi-)metrics on the probability simplex (e.g., cityblock, Euclidean, or squared Euclidean distance)
- For general probabilistic predictive models statistical divergences

Statistical divergences

Definition

Let \mathcal{P} be a space of probability distributions. A function $d: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ that satisfies

►
$$d(P,Q) \ge 0$$
 for all $P,Q \in \mathcal{P}$,

•
$$d(P, Q) = 0$$
 if and only if $P = Q$,

is a statistical divergence.

Statistical divergences

Definition

Let \mathcal{P} be a space of probability distributions. A function $d: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ that satisfies

- ► $d(P,Q) \ge 0$ for all $P,Q \in \mathcal{P}$,
- d(P,Q) = 0 if and only if P = Q,

is a statistical divergence.

Note

- d does not need to be symmetric
- d does not need to satisfy the triangle inequality

Statistical divergences

Definition

Let \mathcal{P} be a space of probability distributions. A function $d: \mathcal{P} \times \mathcal{P} \rightarrow \mathbb{R}$ that satisfies

- ► $d(P,Q) \ge 0$ for all $P,Q \in \mathcal{P}$,
- d(P,Q) = 0 if and only if P = Q,

is a statistical divergence.

Note

- d does not need to be symmetric
- d does not need to satisfy the triangle inequality

Examples

 \blacktriangleright *f*-divergences, e.g., Kullback-Leibler divergence or total variation distance

Wasserstein distance

Scoring rules: Definition

Definition

The expected score of a probabilistic predictive model P is defined as

 $\mathbb{E}_{P_{X},Y} s(P_X,Y)$

where scoring rule s(p, y) is the reward of prediction p if the true outcome is y.

Definition

The expected score of a probabilistic predictive model P is defined as

 $\mathbb{E}_{P_{X,Y}} s(P_X,Y)$

where scoring rule s(p, y) is the reward of prediction p if the true outcome is y.

Examples for classification

• Brier score:
$$s(p, y) = -\int_{\Omega} ((\delta_y - p)^2) (d\omega)$$

• Logarithmic score: $s(p, y) = \log p(\{y\})$

For proper scoring rules

 $\mathbb{E}_{P_X,Y} s(P_X,Y) = \mathbb{E}_{P_X} d(\operatorname{law}(Y), \operatorname{law}(Y | P_X))$

 $-\mathbb{E}_{P_X} d(P_X, \operatorname{law}(Y | P_X)) - S(\operatorname{law}(Y), \operatorname{law}(Y))$

Expected score of *P* under *Q* $S(P,Q) := \int_{\Omega} s(P,\omega) Q(d\omega)$ Score divergence

$$d(P,Q) = S(Q,Q) - S(P,Q)$$

[🕒] J. Bröcker. "Reliability, sufficiency, and the decomposition of proper scores." In: Quarterly Journal of the Royal Meteorological Society 135.643 (July 2009)

For proper scoring rules

$$\mathbb{E}_{P_X,Y} s(P_X,Y) = \underbrace{\mathbb{E}_{P_X} d(\operatorname{law}(Y), \operatorname{law}(Y|P_X))}_{\operatorname{resolution}} - \mathbb{E}_{P_X} d(P_X, \operatorname{law}(Y|P_X)) - S(\operatorname{law}(Y), \operatorname{law}(Y))$$

Expected score of *P* under *Q*
$$S(P, Q) := \int_{\Omega} s(P, \omega) Q(d\omega)$$

Score divergence

$$d(P,Q) = S(Q,Q) - S(P,Q)$$

J. Bröcker. "Reliability, sufficiency, and the decomposition of proper scores." In: Quarterly Journal of the Royal Meteorological Society 135.643 (July 2009)

For proper scoring rules

Expected score of *P* under *Q*
$$S(P,Q) := \int_{\Omega} s(P,\omega) Q(d\omega)$$

Score divergence

$$d(P,Q) = S(Q,Q) - S(P,Q)$$

J. Bröcker. "Reliability, sufficiency, and the decomposition of proper scores." In: Quarterly Journal of the Royal Meteorological Society 135.643 (July 2009)

For proper scoring rules

Expected score of *P* under *Q*
$$S(P, Q) := \int_{\Omega} s(P, \omega) Q(d\omega)$$

Score divergence

d(P,Q) = S(Q,Q) - S(P,Q)

[🕒] J. Bröcker. "Reliability, sufficiency, and the decomposition of proper scores." In: Quarterly Journal of the Royal Meteorological Society 135.643 (July 2009)

For proper scoring rules

Expected score of *P* under *Q*
$$S(P,Q) := \int_{\Omega} s(P,\omega) Q(d\omega)$$

Score divergence

d(P,Q) = S(Q,Q) - S(P,Q)

Models can trade off calibration for resolution!

J. Bröcker. "Reliability, sufficiency, and the decomposition of proper scores." In: Quarterly Journal of the Royal Meteorological Society 135.643 (July 2009)

An alternative definition of calibration

Theorem A probabilistic predictive model **P** is calibrated if

$$(P_X,Y)\stackrel{d}{=}(P_X,Z_X),$$

where $Z_X \sim P_X$.

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

An alternative definition of calibration

Theorem A probabilistic predictive model **P** is calibrated if

$$(P_X,Y)\stackrel{d}{=}(P_X,Z_X),$$

where $Z_X \sim P_X$.

Calibration error as distance between $law((P_X, Y))$ and $law((P_X, Z_X))$

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Calibration error: Integral probability metric

$$\mathsf{CE}_{\mathcal{F}} := \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{P_X, Y} f(P_X, Y) - \mathbb{E}_{P_X, Z_X} f(P_X, Z_X) \right|$$

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Calibration error: Integral probability metric

$$\mathsf{CE}_{\mathcal{F}} := \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{P_X, Y} f(P_X, Y) - \mathbb{E}_{P_X, Z_X} f(P_X, Z_X) \right|$$

Examples

- ▶ 1-Wasserstein distance: $\mathcal{F} = \{f : ||f||_{Lip} \leq 1\}$
- ► Total variation distance: $\mathcal{F} = \{f : ||f||_{\infty} \leq 1\}$

🛢 D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Calibration error: Integral probability metric

$$\mathsf{CE}_{\mathcal{F}} := \sup_{f \in \mathcal{F}} \left| \mathbb{E}_{P_X, Y} f(P_X, Y) - \mathbb{E}_{P_X, Z_X} f(P_X, Z_X) \right|$$

Examples

- ▶ 1-Wasserstein distance: $\mathcal{F} = \{f : ||f||_{Lip} \leq 1\}$
- ► Total variation distance: $\mathcal{F} = \{f : ||f||_{\infty} \leq 1\}$

Common choices of ECE_d in classification can be formulated in this way

🛢 D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Reproducing kernel Hilbert space (RKHS)

▶ Hilbert space of functions that satisfy f close to $g \Rightarrow f(x)$ close to g(x)

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

[🛢] D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Reproducing kernel Hilbert space (RKHS)

- ▶ Hilbert space of functions that satisfy f close to $g \Rightarrow f(x)$ close to g(x)
- > Possesses a positive-definite function k as reproducing kernel

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

[🛢] D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Reproducing kernel Hilbert space (RKHS)

- Hilbert space of functions that satisfy f close to $g \Rightarrow f(x)$ close to g(x)
- Possesses a positive-definite function k as reproducing kernel

Definition

The kernel calibration error (KCE) of a model P with respect to kernel k is defined as

$$\mathsf{KCE}_{k}^{2} := \mathsf{CE}_{\mathcal{F}}^{2} = \int k((p, y), (\tilde{p}, \tilde{y})) \mu(\mathsf{d}(p, y)) \mu(\mathsf{d}(\tilde{p}, \tilde{y})),$$

where $\mu = \operatorname{law}((P_X, Y)) - \operatorname{law}((P_X, Z_X)).$

🛢 D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Observations

Kernel k defined on the product space of predictions and targets

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Observations

- ► Kernel *k* defined on the product space of predictions and targets
- In multi-class classification, k can be identified with a matrix-valued kernel on the space of predictions

🛢 D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Observations

- ► Kernel *k* defined on the product space of predictions and targets
- In multi-class classification, k can be identified with a matrix-valued kernel on the space of predictions
- For specific kernel choices, Z_X can be integrated out analytically

🛢 D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Observations

- Kernel k defined on the product space of predictions and targets
- In multi-class classification, k can be identified with a matrix-valued kernel on the space of predictions
- For specific kernel choices, Z_X can be integrated out analytically
- Otherwise numerical integration methods (e.g., Monte Carlo integration) can be used to integrate out Z_X

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

[🛢] D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Observations

- Kernel k defined on the product space of predictions and targets
- In multi-class classification, k can be identified with a matrix-valued kernel on the space of predictions
- For specific kernel choices, Z_X can be integrated out analytically
- Otherwise numerical integration methods (e.g., Monte Carlo integration) can be used to integrate out Z_X
- ► Suggestive to use tensor product kernels k = k_P ⊗ k_Y, where k_P and k_Y are kernels on the space of predictions and targets, respectively

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

[🛢] D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Tensor product kernel

Construction of $k_{\mathcal{P}}$ with Hilbertian metrics

For Hilbertian metrics of form $d_{\mathcal{P}}(\rho, \tilde{\rho}) = \|\phi(\rho) - \phi(\tilde{\rho})\|_2$ for some $\phi \colon \mathcal{P} \to \mathbb{R}^d$,

$$k_{\mathcal{P}}(\boldsymbol{\rho}, \tilde{\boldsymbol{\rho}}) = \exp\left(-\lambda d_{\mathcal{P}}^{\nu}(\boldsymbol{\rho}, \tilde{\boldsymbol{\rho}})\right), \tag{1}$$

is valid kernel on the space of predictions for $\lambda > 0$ and $\nu \in (0, 2]$

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Tensor product kernel

Construction of $k_{\mathcal{P}}$ with Hilbertian metrics

► For Hilbertian metrics of form $d_{\mathcal{P}}(p, \tilde{p}) = \|\phi(p) - \phi(\tilde{p})\|_2$ for some $\phi \colon \mathcal{P} \to \mathbb{R}^d$,

$$k_{\mathcal{P}}(\boldsymbol{\rho}, \tilde{\boldsymbol{\rho}}) = \exp\left(-\lambda d_{\mathcal{P}}^{\boldsymbol{\nu}}(\boldsymbol{\rho}, \tilde{\boldsymbol{\rho}})\right), \tag{1}$$

is valid kernel on the space of predictions for $\lambda > 0$ and $\nu \in (0, 2]$

 \blacktriangleright Parameterization of predictions gives rise to ϕ naturally

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021
Tensor product kernel

Construction of $k_{\mathcal{P}}$ with Hilbertian metrics

For Hilbertian metrics of form $d_{\mathcal{P}}(p, \tilde{p}) = \|\phi(p) - \phi(\tilde{p})\|_2$ for some $\phi \colon \mathcal{P} \to \mathbb{R}^d$,

$$k_{\mathcal{P}}(p,\tilde{p}) = \exp\left(-\lambda d_{\mathcal{P}}^{\nu}(p,\tilde{p})\right), \tag{1}$$

is valid kernel on the space of predictions for $\lambda > 0$ and $\nu \in (0, 2]$

- \blacktriangleright Parameterization of predictions gives rise to ϕ naturally
- For many mixture models, Hilbertian metrics of model components can be lifted to Hilbertian metric of mixture models

[🛢] D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests beyond classification." In: International Conference on Learning Representations. 2021

Estimation of calibration errors

Estimation of calibration errors

Task

Estimate the calibration error of a model P from a validation dataset $(X_i, Y_i)_{i=1,...,n}$ of features and corresponding targets.

Estimation of calibration errors

Task

Estimate the calibration error of a model P from a validation dataset $(X_i, Y_i)_{i=1,...,n}$ of features and corresponding targets.

Dataset of predictions and targets sufficient

- Calibration (errors) defined based only on predictions and targets
- Estimation can be performed with dataset (P_{Xi}, Yi) of predictions and corresponding targets instead
- Highlights that structure of features and model is not relevant for calibration estimation

ECE: Estimation

Problem The estimation of $|\alpha w(Y|P_X)$ is challenging.

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

ECE: Estimation

Problem

The estimation of $|\alpha w(Y | P_X)$ is challenging.

Binning predictions

- Common approach in classification
- Often leads to biased and inconsistent estimators

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

10-class classification

For three models **M1**, **M2** and **M3**, 10^4 synthetic datasets $(P_{X_i}, Y_i)_{i=1,...,250}$ are sampled according to

•
$$P_{X_i} = \text{Cat}(p_i)$$
 with $p_i \sim \text{Dir}(0.1, \dots, 0.1)$,

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

10-class classification

For three models **M1**, **M2** and **M3**, 10^4 synthetic datasets $(P_{X_i}, Y_i)_{i=1,...,250}$ are sampled according to

$$P_{X_i} = Cat(p_i) \text{ with } p_i \sim Dir(0.1, \dots, 0.1),$$
 $Y_i \text{ conditionally on } P_{X_i} \text{ from}$
 $\mathbf{M1}: P_{X_i}, \quad \mathbf{M2}: 0.5P_{X_i} + 0.5\delta_1, \quad \mathbf{M3}: U(\{1, \dots, 10\}).$

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

10-class classification

For three models **M1**, **M2** and **M3**, 10^4 synthetic datasets $(P_{X_i}, Y_i)_{i=1,...,250}$ are sampled according to

$$P_{X_i} = Cat(p_i) \text{ with } p_i \sim Dir(0.1, \dots, 0.1),$$
 $Y_i \text{ conditionally on } P_{X_i} \text{ from}$
 $M1: P_{X_i}, \quad M2: 0.5P_{X_i} + 0.5\delta_1, \quad M3: U(\{1, \dots, 10\}).$

Model **M1** is calibrated, and models **M2** and **M3** are uncalibrated.

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

10-class classification

For three models **M1**, **M2** and **M3**, 10^4 synthetic datasets $(P_{X_i}, Y_i)_{i=1,...,250}$ are sampled according to

$$P_{X_i} = Cat(p_i) \text{ with } p_i \sim Dir(0.1, ..., 0.1),$$

$$Y_i \text{ conditionally on } P_{X_i} \text{ from}$$

$$M1: P_{X_i}, M2: 0.5P_{X_i} + 0.5\delta_1, M3: U(\{1, ..., 10\}).$$

Model **M1** is calibrated, and models **M2** and **M3** are uncalibrated.

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Kernel calibration error: Estimation

For the MMD unbiased and consistent estimators are available

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Kernel calibration error: Estimation

For the MMD unbiased and consistent estimators are available

> Variance can be reduced by marginalizing out Z_X

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Kernel calibration error: Estimation

For the MMD unbiased and consistent estimators are available

Variance can be reduced by marginalizing out Z_X

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Problems with calibration errors

Calibration errors have no meaningful unit or scale

Problems with calibration errors

- Calibration errors have no meaningful unit or scale
- Different calibration errors rank models differently

Problems with calibration errors

- Calibration errors have no meaningful unit or scale
- Different calibration errors rank models differently
- Calibration error estimators are random variables

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Null hypothesis $H_0 :=$ "model is calibrated"

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

^{9).} Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Original dataset

$$\begin{array}{ccc} y_1 & P_{x_1} \\ \vdots & \vdots \\ y_n & P_{x_n} \end{array}$$

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

Original dataset

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

Consistency bars

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

Consistency bars

J. Bröcker and L. A. Smith. "Increasing the reliability of reliability diagrams." In: Weather and Forecasting (2007)

Variant

J. Vaicenavicius et al. "Evaluating model calibration in classification." In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Vol. 89. Apr. 2019

Kernel calibration error: Distribution-free tests

Upper bound the p-value

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Kernel calibration error: Distribution-free tests

Upper bound the p-value

significance level

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32. 2019

Kernel calibration error: Asymptotic tests

Approximate the p-value based on the asymptotic distribution

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Kernel calibration error: Asymptotic tests

Approximate the p-value based on the asymptotic distribution

D. Widmann, F. Lindsten, and D. Zachariah. "Calibration tests in multi-class classification: A unifying framework." In: Advances in Neural Information Processing Systems 32, 2019

Calibration: Software packages

CalibrationAnalysis.jl

Summary

- Suite for analyzing calibration of probabilistic predictive models
- Written in Julia, with interfaces in Python (pycalibration) and R (rcalibration)

CalibrationAnalysis.jl

Summary

- Suite for analyzing calibration of probabilistic predictive models
- Written in Julia, with interfaces in Python (pycalibration) and R (rcalibration)

Features

- Supports classification and regression models
- Reliability diagrams (ReliabilityDiagrams.jl)
- Estimation of calibration errors such as ECE and KCE (CalibrationErrors.jl)
- Calibration tests (CalibrationTests.jl)
- Integration with Julia ecosystem: Supports Plots.jl and Makie.jl, KernelFunctions.jl, and HypothesisTests.jl
Calibration analysis: Penguins example

We train a naive Bayes classifier of penguin species based on bill depth, bill length, flipper length, and body mass.

Binary predictions

Reliability diagram

)

```
binning=EqualMass(; n=15),
deviation=true,
```

Polished result

Expected calibration error: Code

```
julia> ece = ECE(UniformBinning(5), TotalVariation());
```

```
julia> ece(confidence, outcome)
0.06594437403598197
```

```
julia> ece(predictions, observations)
0.15789651955832515
```

Kernel calibration error: Code

```
julia> kernel = GaussianKernel() & WhiteKernel();
```

```
julia> skce = SKCE(kernel);
```

```
julia> skce(predictions, observations)
0.0032631144705774404
```

```
julia> skce = SKCE(kernel; unbiased=false);
```

```
julia> skce(predictions, observations)
0.004202113116841622
```

```
julia> skce = SKCE(kernel; blocksize=5);
```

```
julia> skce(predictions, observations)
-0.005037270862051889
```

Calibration test: Code

julia> AsymptoticSKCETest(kernel, predictions, observations)

Asymptotic SKCE test

Population details:

parameter of interest:	SKCE
value under h_0:	0.0
point estimate:	0.0032631

Test summary: outcome with 95% confidence: reject h_0 one-sided p-value: 0.0150

```
Details:
test statistic: -0.0009060378940361157
```

julia> test = ConsistencyTest(ece, predictions, observations);

```
julia> pvalue(test; bootstrap_iters=10_000)
0.0188
```

Additional resources

Online documentation: https://devmotion.github.io/CalibrationErrors.jl/

Talk at JuliaCon 2021: https://youtu.be/PrLsXFvwzuA

Slides available at https://talks.widmann.dev/2021/07/calibration/

Concluding remarks

Important takeaways

- More fine-grained analysis of calibration can be important
- MMD-like kernel calibration error can be applied to probabilistic models beyond classification
- Estimators of kernel calibration error have appealing properties
- Calibration errors and reliability diagrams can be misleading